برخی روش های تکراری برای حل معادلات عملگری روی فضای هیلبرت با استفاده از قاب های تعمیم یافته
پایان نامه
چکیده
این پایان نامه چند روش تکراری برای حل یک معادله ی عملگری روی یک فضای هیلبرت جدایی پذیر h که مجهز به یک g-قاب می باشد، ارائه می کند.
منابع مشابه
کاربرد های قاب و قاب های زیرفضایی در روش های تکراری برای حل معادلات عملگری
در این پایان نامه استفاده از قاب های زیرفضایی را برای حل عددی معادله ی lu=f, که در آن l عملگری خودالحاق، کران دار و معکوس پذیر روی فضای هیلبرت جدایی پذیر h، می باشد را مورد بررسی قرار می دهیم. ابتدا با استفاده از قاب های زیرفضایی الگوریتم هایی براساس روش های گالرکین و ریچادسون جهت بدست آوردن جواب های تقریبی برای این معادله اراه خواهیم کرد. سپس قاب های زیرفضایی را به منظور بدست آوردن یک معادله...
حل معادلات عملگری X-AXB=C و A X+X^{*} C=B در مدول های-C^* هیلبرت
معادلات $X-AXB=C$ و $A X+X^{*} C=B$ دارای کاربرد وسیعی در نظریه کنترل و سیستم های خطی می باشند. در این پژوهش به بررسی شرط لازم و کافی برای وجود جواب آنها با در نظرگرفتن شرایطی پرداخته شده است. برای پیدا کردن جواب دقیق معادله دوم از نمایش ماتریسی عملگرها استفاده شده است، که این امکان را فراهم آورده، که بتوان جواب معادله را بر حسب وارون مور-...
متن کاملحل سازگار معادلات عملگری با استفاده از قاب های موجکی
هدف این پایان نامه حل معادلات عملگری است که از قابهای مجکی استفاده میکند
مقایسه عددی برخی از اندازه های فی-واگرا برای مفصل های فارلی-گامبل-مورگنسترن تعمیم یافته
این مقاله در جستجوی ملاکی بهینه برای مقایسه برخی از اندازه های فی واگرا است، که در آن میزان وابستگی خانواده مفصل فارلی-گامبل-مورگنسترن تعمیم یافته به روش عددی محاسبه می شود. بر این اساس، اندازه هلینجر به عنوان اندازه فی-واگرای بهینه پیشنهاد می شود
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023